#ISSS2016 Boulder has ended
Back To Schedule
Tuesday, July 26 • 3:30pm - 4:00pm
Managing for the Health of Coupled Human and Natural Systems at the Watershed Scale

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

2800 Within all watersheds, ecosystem health is intrinsically linked to human health. The pathways of this coupling are multiple, diffuse and interacting. For example, the percentage of canopy cover in a given area is an indicator of both human and watershed health; more shade lowers surrounding temperature and helps to reduce rates of heat stress and skin cancer caused by sun exposure, and treed areas mitigate rainfall runoff, assist water infiltration and reduce risks of flooding. A recent study in Toronto found that having ten more trees on streets had a health impact equivalent to being seven years younger. To understand and manage such relationships requires an approach that appreciates the complex coupling of human and natural systems. The work we describe in this paper demonstrates an ecosystem approach to human health and well-being (a.k.a. an ecohealth approach) at the watershed scale. To explore the extent to which watershed governance agencies activity manage for both ecosystem and human health, we drew upon the Watershed Governance Prism to develop case studies and inform a self-assessment of five watershed governance organizations (the Fraser Basin Council, Cowichan Watershed Board, Save Our Seine Environment Inc., Otonabee Region Conservation Authority and Lake Simcoe and Region Conservation Authority). Through this work, we identified the need for a more strategic approach to watershed governance that actively seeks linkages with public health institutions to meet goals that are common to both the health and environment sectors. We found that watershed organizations’ programs affect the social and environmental determinants of health at multiple spatial and organizational scales, but awareness and indicators of the potential benefits are underdeveloped and poorly conceptualized. Stepping out from this study, researchers at York University and the Credit Valley Conservation Authority have collaborated on a project that seeks to understand and communicate the relationship among various watershed ecosystem components and human health and well-being. In the first phase of this project, we surveyed residents within the Credit River watershed about their perceptions of the connection(s) between their health and their surrounding environment, and we facilitated a workshop with governance stakeholders to identify key indicators of such relationships. Among our findings, we noted that some residents of the Credit River watershed understood that such fundamental relationships exist among the natural environment and their health. For example, many believed that places associated with water, such as streams and ponds, had a stronger effect on their health than other green spaces. We also found that older respondents had a greater appreciation of such connections than did younger respondents. Governance stakeholders identified several environmental indicators of health that would better communicate environment and health relationships. The top three were: percentage of canopy cover, access to green space, and percentage of impervious surfaces. We used this information in the design of an interactive web-based tool and geographic information system. This web-GIS displays provincial, regional, and municipal data related to the Credit River watershed, including indicators of health and descriptions of how they influence human health and well-being. It also includes a storytelling component that provides an opportunity for residents within the watershed to share personal experiences of their connection to the environment. The web-GIS is intended to educate the public about ecosystem services and their influence on people, and to demonstrate the impact of the work of Credit Valley Conservation not only on ecosystem health but also on human well-being. In the second phase of the project, we are further developing the web-GIS tool to support scenario planning for ecosystem and human health in the Credit River Watershed.

avatar for Thomas Wong

Thomas Wong

SIG Chair: Health and Systems Thinking, Ancient Balance Medicine Education Centre
SIG Chair: Health and Systems ThinkingBachelor of Engineering with First Class Honours in ITBachelor of Traditional Chinese MedicineMaster of Engineering in TelecommunicationTherapist of Traditional Chinese Medicine Deep Tissue pain therapy (1991-now)Chair of Health and Systems Thinking... Read More →

Tuesday July 26, 2016 3:30pm - 4:00pm MDT
ECCR 265

Attendees (2)