Loading…
#ISSS2016 Boulder has ended
#ISSS2016 USA [clear filter]
Thursday, July 21
 

2:00pm MDT

Anticipation and Systems Thinking: A Key to Resilient Systems
Disasters often endanger the foundations of our society. Due to many factors (larger popula- tion, more dependency on more complex technology, more and greater interference in natural systems and the environment, dramatic changes in the environment, ...) the number and the severity of disasters seem to grow, additionally exaggerated by the media coverage.The ultimate aim in the case of disaster is to save as many lives as possible and also safeguard the survival of the society in total and to protect as much of the societal structure, infrastructure and environment as possible. This requires the social system to show an amount of resistance and stability with respect to an incident that can cause endangering disasters.An incident of this kind can be attributed to the interaction of three overall factors: an external or internal hazard, a vulnerability of the system and an insufficient reactive capacity of the system to shield or resist the incident.With respect to the system’s capacity two countermeasures are essential to overcome an incident of that kind: * Anticipation of the incident and as a consequence the provision of adequate preparation and * Systemic Thinking in order to understand the relationship of and cybernetic loops within the components of the affected system and the incident.Anticipation and as a consequence a timely preparation of responses to future disasters will help to avoid the worst possible consequences and improve the chances for survival. Additionally we need a better understanding of the complex relationships causing the hazard and the long-term effects of our interventions on nature, human society, and environment: Systems Thinking.In this paper we analyze the key factors potentially leading to a system disturbance: Hazard, vulnerability of the affected system and capacity of the affected system. We classify these disturbances (incident, emergency, crisis, disaster, and catastrophe) and analyze the different reactions a system can show (fragile, fault tolerant, elastic, resilient, robust, antifragile). By discussing the phases of disaster management we can identify the information required for effective Anticipation and for the identification of critical systemic relationships. Finally we analyze the phases of Disaster Management, emphasizing the need for and the application of Anticipation. We identify the source of information needed for a successful anticipatory view. As a conclusion we identify systemic problems encountered during disaster management, especially in view of anticipatory actions.

Chairs
avatar for Gerhard Chroust

Gerhard Chroust

Prof. Emeritus, Systems Engineering, Johannes Kepler Univ. Linz
Gerhard Chroust is an Austrian systems scientist, and Professor Emeritus for Systems Engineering and Automationat the Institute of System Sciences at the Johannes Kepler University of Linz, Austria. Chroust is an authority in the fields of formal programming languages and interdisciplinary... Read More →

Thursday July 21, 2016 2:00pm - 2:30pm MDT
ECCR 1B51

2:30pm MDT

On the Information Processing Aspect of the Evolutionary Process
A premise of this paper is that the dynamics of any system, by which we mean here the collection of processes that perform its functions and thus achieve its purpose, needs information for the execution, control, and coordination of such processes. The information processing aspect of a dynamics is precisely what provides the information that it needs in order to proceed. The dynamics of the Earth ecosystem, for example, includes the processes that encompass the origin and evolution of life and the development of human society. In this paper I refer to the part of this all-encompassing process that includes the behavior and evolution of biological systems and human organizations as the evolutionary process. The main focus of the paper is the information processing aspect of this evolutionary process. More specifically, I focus on the evolution of the information processing capabilities of biological organisms and systems, including human individuals and organizations. Especially important is the emergence through this evolutionary process of increasingly complex structures that have made possible more complex behaviors and, consequently, more complex ways of processing information. Superimposed on this evolution is the creation and development of artificial means of information processing and the integration of their use into the information processing aspect of human individuals and organizations. The idea is to contribute to the understanding of the potential that the development and use of artificial information processing devices and systems offers for the effective support of the functions of modern organizations and their adaptability. However, the tremendous potential of computer-based information systems and information technology cannot be fully realized if they do not appropriately extend the information processing capabilities that exist at all levels of the dynamics of the organizations that they support. A sufficient understanding of the information processing aspect of this evolutionary process is in my opinion necessary for the appropriate, synergistic extension, with computer and information technology, of the information processing capabilities that already exist in modern organizations. 

Chairs
avatar for Anand Kumar

Anand Kumar

Systems Achitecture and Engineering
Anand Kumar has more than 20 years of Industrial experience in Systems architecture and engineering. He has been a researcher in Architecture and Business systems for more than a decade. His interests are in Business Systems, Architecture and Digital Product-Service Systems. He has... Read More →

Thursday July 21, 2016 2:30pm - 3:00pm MDT
ECCR 265
 
Monday, July 25
 

8:29am MDT

Plenary I: The Challenge of System(s) Sustainability
Description: This year’s conference focuses on what it means for a system to be sustainable (“systemic sustainability”): exploring more holistic science and thinking to understand, manage, and create sustainability in complex socio-ecological systems. We are intentionally stepping outside traditional comfort zones to explore new territory and possibly find new answers. For this we recognize the importance of empowering students; removing philosophical and institutional blocks to their inquiry into such questions, and providing them with the best tools to guide their research and practical experiences. From development of new theories and practices to integration of existing ones, our challenge is to determine what will lead society into the transformations needed for a sustainable future and beyond to even greater symbiotic and innovative opportunities; and how we as a society can help initiate those changes. [Chair: John Kineman]

Speakers
JK

John Kineman

SIG Chair: Relational Science, International Society for the System Sciences
Senior Research Scientist, CIRES, University of Colorado Stellenbosch Research Fellow (2016), Stellenbosch South AfricaAdjunct Professor, Vignan University, Vadlamudi, IndiaPresident (2015-2016), International Society for the Systems Sciences ISSS SIG Chair: Relational ScienceDr... Read More →
avatar for Gunter Pauli

Gunter Pauli

Director and Chief Technology Officer, Blue Economy Holdings, Inc.
Gunter Pauli (1956) graduated as an economist with an MBA ant then established ten companies of which two failed. He has never had a job and has always worked independently. Inspired by Aurelio Peccei, the founder of the Club of Rome, he set out to pioneer and be the change he wanted... Read More →
avatar for Peter Tuddenham

Peter Tuddenham

CoExplorer, producer, learning architect, College of Exploration
Peter D. Tuddenham In 1991 he co-founded the College of Exploration, an online learning platform focused on bringing cutting-edge ocean, earth, space and social science to educators at all levels, which has reached over 15,000 students globally. He was co-organizer of the U.S.A. Ocean Literacy and... Read More →
avatar for Jennifer Wilby

Jennifer Wilby

Vice President Admin, ISSS
From 1978 Jennifer started working in urban planning, followed by database programming and textbook publishing until 1993. In 1989, moving to San Jose, Jennifer graduated in 1992 from the MSc in Cybernetic Systems at San Jose State University. Moving back to the UK in 1993, she worked... Read More →


Monday July 25, 2016 8:29am - 8:30am MDT
MATH 100* Math Academic Building, University of Colorado

8:35am MDT

John Kineman: Introduction and Conference Program: Realizing Sustainable Futures
Chairs
JK

John Kineman

SIG Chair: Relational Science, International Society for the System Sciences
Senior Research Scientist, CIRES, University of Colorado Stellenbosch Research Fellow (2016), Stellenbosch South AfricaAdjunct Professor, Vignan University, Vadlamudi, IndiaPresident (2015-2016), International Society for the Systems Sciences ISSS SIG Chair: Relational ScienceDr... Read More →

Sponsors & Partners
avatar for ISSS

ISSS

International Society for the Systems Sciences


Monday July 25, 2016 8:35am - 8:55am MDT
MATH 100* Math Academic Building, University of Colorado

8:55am MDT

Gunter Pauli: The Blue Economy: How innovations in technologies and business models set new rules for sustainability.
Chairs
JK

John Kineman

SIG Chair: Relational Science, International Society for the System Sciences
Senior Research Scientist, CIRES, University of Colorado Stellenbosch Research Fellow (2016), Stellenbosch South AfricaAdjunct Professor, Vignan University, Vadlamudi, IndiaPresident (2015-2016), International Society for the Systems Sciences ISSS SIG Chair: Relational ScienceDr... Read More →

Speakers
avatar for Gunter Pauli

Gunter Pauli

Director and Chief Technology Officer, Blue Economy Holdings, Inc.
Gunter Pauli (1956) graduated as an economist with an MBA ant then established ten companies of which two failed. He has never had a job and has always worked independently. Inspired by Aurelio Peccei, the founder of the Club of Rome, he set out to pioneer and be the change he wanted... Read More →

Sponsors & Partners
avatar for ISSS

ISSS

International Society for the Systems Sciences


Monday July 25, 2016 8:55am - 9:35am MDT
MATH 100* Math Academic Building, University of Colorado

9:35am MDT

Peter Tuddenham: Systems Literacy Education Goals
Chairs
JK

John Kineman

SIG Chair: Relational Science, International Society for the System Sciences
Senior Research Scientist, CIRES, University of Colorado Stellenbosch Research Fellow (2016), Stellenbosch South AfricaAdjunct Professor, Vignan University, Vadlamudi, IndiaPresident (2015-2016), International Society for the Systems Sciences ISSS SIG Chair: Relational ScienceDr... Read More →

Speakers
avatar for Peter Tuddenham

Peter Tuddenham

CoExplorer, producer, learning architect, College of Exploration
Peter D. Tuddenham In 1991 he co-founded the College of Exploration, an online learning platform focused on bringing cutting-edge ocean, earth, space and social science to educators at all levels, which has reached over 15,000 students globally. He was co-organizer of the U.S.A. Ocean Literacy and... Read More →

Sponsors & Partners
avatar for ISSS

ISSS

International Society for the Systems Sciences


Monday July 25, 2016 9:35am - 10:15am MDT
MATH 100* Math Academic Building, University of Colorado

1:30pm MDT

From Systemystery to Systemastery - A Toolbox for Developing Systemry
2814 As systemists we need to be able to communicate using a common reference for the science of systems. Such a reference should provide a simple compelling framework for understanding systemist attitudes and systems concepts. It should be compelling for scientists, engineers and for people, even children, who are just starting out in their journey to understand systems. A candidate framework explored during the INCOSE international workshop in 2016 was used as a basis for developing a game at the IFSR conversation in 2016. The game is intended as a candidate contributor to Systems Literacy. The intended experience of the game is to help people to act in a systemic way when presented with a new situation. By playing the SysteMystery game the learners will be able to reflect on a situation and make improved decisions or judgements. Through playing the game learners will be able to grasp and expand their knowledge of core systems concepts. Through practice the learners will begin to naturally use concepts effectively when converting information into knowledge and forming their mental model of a bigger picture. Playing the game has three phases: a phase of experience which could be a story, game, poem, song or explanation of problem or situation; a phase of reflection and analysis of the experience using the SysteMystery cards and a post analysis phase where improvements to the SysteMystery framework are considered and fed-back to the repository.

Chairs
avatar for Professor Ockie Bosch

Professor Ockie Bosch

President, International Society for the Systems Sciences
Professor Ockie Bosch was born in Pretoria, South Africa. He first came to Australia in 1979 where he was an invited senior visiting scientist with the CSIRO in Alice Springs. After one year in Longreach (1989) he emigrated to New Zealand where he was offered a position with Landcare... Read More →

Monday July 25, 2016 1:30pm - 2:00pm MDT
ECCR 245

1:30pm MDT

On the Information Processing Aspect of the Evolutionary Process
2818 A premise of this paper is that the dynamics of any system, by which we mean here the collection of processes that perform its functions and thus achieve its purpose, needs information for the execution, control, and coordination of such processes. The information processing aspect of a dynamics is precisely what provides the information that it needs in order to proceed. The dynamics of the Earth ecosystem, for example, includes the processes that encompass the origin and evolution of life and the development of human society. In this paper I refer to the part of this all-encompassing process that includes the behavior and evolution of biological systems and human organizations as the evolutionary process. The main focus of the paper is the information processing aspect of this evolutionary process. More specifically, I focus on the evolution of the information processing capabilities of biological organisms and systems, including human individuals and organizations. Especially important is the emergence through this evolutionary process of increasingly complex structures that have made possible more complex behaviors and, consequently, more complex ways of processing information. Superimposed on this evolution is the creation and development of artificial means of information processing and the integration of their use into the information processing aspect of human individuals and organizations. The idea is to contribute to the understanding of the potential that the development and use of artificial information processing devices and systems offers for the effective support of the functions of modern organizations and their adaptability. However, the tremendous potential of computer-based information systems and information technology cannot be fully realized if they do not appropriately extend the information processing capabilities that exist at all levels of the dynamics of the organizations that they support. A sufficient understanding of the information processing aspect of this evolutionary process is in my opinion necessary for the appropriate, synergistic extension, with computer and information technology, of the information processing capabilities that already exist in modern organizations.

Chairs
avatar for Anand Kumar

Anand Kumar

Systems Achitecture and Engineering
Anand Kumar has more than 20 years of Industrial experience in Systems architecture and engineering. He has been a researcher in Architecture and Business systems for more than a decade. His interests are in Business Systems, Architecture and Digital Product-Service Systems. He has... Read More →

Monday July 25, 2016 1:30pm - 2:00pm MDT
ECCR 265

1:30pm MDT

The Thinking Space: the Enactment of a Platform for Critical Systems Practice
2799 This paper focuses on describing the process of enactment of a ‘platform’, namely, The Thinking Space (TS), as a device for Critical Systems Practice CSP. This is part of a research project that generated a series of findings contributing to the study of the process whereby different systems methodologies, methods, tools and techniques are used in combination. This process is known as Critical Systems Practice (CSP). The study yielded ‘defensible generalisations’ from a series of research themes explored. These defensible generalisations or contributions relate to three research issues relevant to CSP, namely, (a) pluralism, (b) improvement, and (c) the role of the agent. The learning derived from these research themes led the researcher to formulate the ‘transferable problem solving capability’ of the study: the enactment of ‘platforms’ as devices for operationalising CSP. Platforms are defined as ‘organisational and intellectual spaces’ enacted by actors and evolving with the changing nature of actors’ moment-to-moment interactions, by means of engaging in a continuous mutual research endeavour and of engaging in enhancing collective competence, in order to pursue an informed practice (to pursue CSP). The study is the result of reflection and debate, which was reciprocally enriched by theory and practice. It presents the findings of an organisation-based action research project, where the researcher entered into a real-world situation and aimed both at improving it and acquiring knowledge about the experience. He became, for a period of three years, involved in the flux of ‘real-world problems’ within an engineering company that invited him to do research by using systems ideas in practice. This paper thus recapitulates on the contributions that this research endeavour had on the three research themes focusing on the emergence of a particular ‘platform’, the Thinking Space (TS), as a device for operationalising CSP; the fourth ‘emergent’ research theme. Concerning the ‘transferable problem solving capability’ of the study, the TS is one particular device considered to provide evidence for proposing the research theme of ‘platforms’. Keywords: platforms; Critical Systems Practice; transferable problem solving capability, pluralism; improvement; role of the agent This paper focuses on describing the process of enactment of a ‘platform’, namely, The Thinking Space (TS), as a device for Critical Systems Practice CSP. This is part of a research project that generated a series of findings contributing to the study of the process whereby different systems methodologies, methods, tools and techniques are used in combination. This process is known as Critical Systems Practice (CSP). The study yielded ‘defensible generalisations’ from a series of research themes explored. These defensible generalisations or contributions relate to three research issues relevant to CSP, namely, (a) pluralism, (b) improvement, and (c) the role of the agent. The learning derived from these research themes led the researcher to formulate the ‘transferable problem solving capability’ of the study: the enactment of ‘platforms’ as devices for operationalising CSP. Platforms are defined as ‘organisational and intellectual spaces’ enacted by actors and evolving with the changing nature of actors’ moment-to-moment interactions, by means of engaging in a continuous mutual research endeavour and of engaging in enhancing collective competence, in order to pursue an informed practice (to pursue CSP). The study is the result of reflection and debate, which was reciprocally enriched by theory and practice. It presents the findings of an organisation-based action research project, where the researcher entered into a real-world situation and aimed both at improving it and acquiring knowledge about the experience. He became, for a period of three years, involved in the flux of ‘real-world problems’ within an engineering company that invited him to do research by using systems ideas in practice. This paper thus recapitulates on the contributions that this research endeavour had on the three research themes focusing on the emergence of a particular ‘platform’, the Thinking Space (TS), as a device for operationalising CSP; the fourth ‘emergent’ research theme. Concerning the ‘transferable problem solving capability’ of the study, the TS is one particular device considered to provide evidence for proposing the research theme of ‘platforms’. Keywords: platforms; Critical Systems Practice; transferable problem solving capability, pluralism; improvement; role of the agent

Chairs
avatar for Jennifer Wilby

Jennifer Wilby

Vice President Admin, ISSS
From 1978 Jennifer started working in urban planning, followed by database programming and textbook publishing until 1993. In 1989, moving to San Jose, Jennifer graduated in 1992 from the MSc in Cybernetic Systems at San Jose State University. Moving back to the UK in 1993, she worked... Read More →

Monday July 25, 2016 1:30pm - 2:00pm MDT
ECCR 1B55

2:00pm MDT

The Holistic Values of Socio-Ecological Systems and the Practice of Green Development InChina
2758 The continuous intensify of ecological crisis has aroused a strong sense of ecological protection. Since the 80s of the 20th century, a serious of movement aimed at environmental protection, ecological movement, and feminism appeared in the developed countries in Western Europe. The movement which is called the Green Movement treated intellectuals and middle class as the main participants. The serious environmental problems also emerged in the process of realizing the rapid development of economy in China. Therefore, the Chinese government focus on the ideas of Green Development. The green development requires the whole society to establish a reasonable value of natural capital, to form new social and moral norms, to promote green lifestyles, and so forth. The way of China's green development has get the world's attention. From the green movement to the green development, it has formed a systems holistic values of socio-ecological system gradually. Firstly, we support the intrinsic value of natural system and oppose the traditional philosophy values which considered the tool value of nature as primary only when it is related to the subjective purpose of human beings or meets the needs of humans. Secondly, we propose that the values of natural system is holistic. The intrinsic value of natural system and the tool value can be converted to each other. As Rolston III said, the intrinsic value and the tool value would be converted among lives, species, systems and surroundings by the transformation of systems, so as to maintain the stability and integrality of systems. In socio-ecological system, the interaction between the natural values and human values and the function of each other formed the value chain of system dynamics and integrity. Thirdly, the order parameter of socio-ecological system is bearing threshold of systems, the order parameter emerged by the synergistic reaction of social system, economic system and natural system will constraint and control the collaboration optimization of each subsystem of the socio-ecological systems in turn. Modern systems science and complexity research has provided a new perspective and theoretical basis to the intrinsic value of natural systems and the holistic values of socio-ecological systems when it refers to the holistic property and emergence, adaptation and evolution, purpose and values of systems. The holistic values of socio-ecological systems pay more attention to the holistic interests of human social system, economic system and natural system. It has great significance to solve serious ecological crisis and realize sustainable futures in socio-ecological systems.

Chairs
avatar for Mag. Stefan Blachfellner

Mag. Stefan Blachfellner

SIG Chair: Socio-Ecological Systems and Design, Bertalanffy Center for the Study of Systems Science
https://about.me/bstefan

Speakers
MD

Mrs. Dongping Fan

systems2016@126.com
MQ

Mr Qiang Fu

vongss@163.com


Monday July 25, 2016 2:00pm - 2:30pm MDT
ECCR 200

2:30pm MDT

On the Information Processing Aspect of the Evolutionary Process
2853   On the Information Processing Aspect of the Evolutionary Process 

Chairs
avatar for Anand Kumar

Anand Kumar

Systems Achitecture and Engineering
Anand Kumar has more than 20 years of Industrial experience in Systems architecture and engineering. He has been a researcher in Architecture and Business systems for more than a decade. His interests are in Business Systems, Architecture and Digital Product-Service Systems. He has... Read More →

Monday July 25, 2016 2:30pm - 3:00pm MDT
ECCR 265

2:30pm MDT

Sustainability Challenged – Comparing Two Competing Value Systems – What We Found “Shang Jun Shu (The Book By Shang)” From Chin’ Dynasty 2000 Years Ago and the Islamist Ideology Today in Common
2790 Sustainability of this civilization is only a wishful thinking without frank analysis of, followed by strategic plans to deal with, the competing value systems currently playing on the stage of the international politics. High profile keywords here are refuges, terrorism, China Threat, globalization, and “conflict of civilization” (even we do not quite agree with the term in Huntington’s original sense). Among the major competitors with our current mainstream value system are Chinmunism (Hu, 2010), i.e. the so-called Chinese way of order (including social order, state order and world order, with cultural genes traceable back to Chin’ Dynasty 2000 years ago and to Communist movement from 1917 to 1990), and the Islamist Ideology or Islam fundamentalism (e.g. Goldberg, 2015) that becomes a high profile issue in media and our lives for obvious reasons. A guestimated of 50%+ of Chinese-speaking people (700 million) might support a Chinmunistic world view, and in at least 25 countries that 50%+ of Muslims prefer the Sharia Law to be the law of their land (PEW Research, 2013). The authors have noted, among many differences of the text and the context of the two sets of ideas and values, i.e. one sets up of the ruling paradigm for China in 2000 years, and another defines a desirable world of “Umma”, there is an interesting commonality between them: They all aimed at reducing the diversity, complexity, and the degree of freedom of the society they take control, an interesting case for Ashby’s Law of Requisite Variety. This paper compares the similarities and differences of these two value systems to facilitate the readers to draw their own conclusions and decide for their own actions.

Chairs
avatar for Gerhard Chroust

Gerhard Chroust

Prof. Emeritus, Systems Engineering, Johannes Kepler Univ. Linz
Gerhard Chroust is an Austrian systems scientist, and Professor Emeritus for Systems Engineering and Automationat the Institute of System Sciences at the Johannes Kepler University of Linz, Austria. Chroust is an authority in the fields of formal programming languages and interdisciplinary... Read More →

Monday July 25, 2016 2:30pm - 3:00pm MDT
ECCR 1B51

3:30pm MDT

Emerging Possibilities: Adapting Carol Sanford’s Stakeholder Pentad for the Nonprofit and Public Sectors
2767 The nonprofit and public sectors are constantly challenged to create greater impact with fewer and fewer resources. The recession of 2008 has resulted in less funding for both sectors and increased demand for their programs and services, pushing many organizations to the brink. With the likelihood of change in the current state slim, nonprofits and public agencies are eager for new approaches that will enable them to create greater value from existing resources in a socially responsible manner. This paper introduces one possible tool, which was adapted from Carol Sanford’s stakeholder pentad introduced in her book, The Responsible Business: Reimagining Sustainability and Success. Sanford’s pentad is intended to shift a business’s focus away from measuring success based purely on financial returns to one of a quintuple bottom line centered on developing relationships with the following five sets of stakeholders: customers, co-creators, earth, community, and investors. The pentad for the nonprofit and public sectors includes a slightly different set of stakeholders: beneficiaries, co-creators, earth/humanity, community, and investors/funders. Beneficiaries are those for whom programs and services are provided. Co-creators are those with whom non-profits and agencies partner and may include volunteers, staff, partnering organizations, and other stakeholders. Earth/humanity is the pentad point of the global, long-term perspective and is based in relationship to earth and to humanity. The community point in the pentad refers to how an organization’s actions impact the community, and the local perspective and social context in which they operate. The investors and funders for nonprofits and public agencies are local, state, and federal funders, taxpayers, donors, foundations, and board members, without whom these organizations could not realize their visions. Attention to these five stakeholder groups creates a strong sense of resilience in the organization’s community. A case example of how to apply the nonprofit and public sectors pentad to an existing organization is outlined in this paper. It is described through Sanford’s four phases for reconstructing an organization already steeped in its processes and culture. These four phases are (1) cultural evolution, (2) strategic direction, (3) capacity building, and (4) work redesign. This approach will enable nonprofits and public agencies to thrive in the face of scarcity and high demand. Keywords: Carol Sanford; stakeholders; stakeholder engagement; nonprofit sector; public sector; living systems; sustainability; resilience; cultural evolution; strategic direction; capacity building; work redesign; critical systemic thinking; human service organizations  

Chairs
DF

Dennis Finlayson

SIG Chair: Living Systems Science, Derbyshire, UK
SIG Chair: Living Systems ScienceThe principle purpose of the living systems (LSA) group is to investigate all things that live from the very small, such as cell, to and including societies to discover universal phenomena applicable to living things and to develop a living science... Read More →

Speakers
avatar for Marty Jacobs

Marty Jacobs

PhD Student, Saybrook University
I am currently a doctoral candidate in Organizational Systems at Saybrook University in Oakland, CA. My research interests are in dialogue, meaning making, and transformative and organizational learning in multi-sector transformational change, as well as complex adaptive systems and... Read More →


Monday July 25, 2016 3:30pm - 4:00pm MDT
ECCR 265

4:30pm MDT

Performance Evaluation System In Engineering Matters: Systematic and Theoretical Approach to Humanity
2742 As systematic approach to engineering matters, the performance evaluation system is proposed and examined theoretically by using mathematical model. The systematic and theoretical approach to humanity is described. In the long history of human activity, engineering, culture, tradition, customs, life style, language have been formed gradually based upon politics, economics, natural and social environments. In usual, facility (F) behaves and performs a certain interaction (I) under some environments (E). This general phenomenon (physics/chemistry) is due to nature laws and also applies to a general social phenomenon and human activity. Above F,E,I are considered to be primary elements of basic system V(F,E,I).The performance of V(F,E,I) is evaluated as a result of phenomenon. As rating index (p), five elements are defined: time(t), space(x),money(m), humanity(h), quality(q). Basic system V(F,E,I) is expressed in form of V(t,x,m,h,q) because of having rating index built-in. Performance evaluation system is formulated by mathematical model (partial differentiation form )of δV(F,E,I)/ δp. Primarily, it is revised to organize the basic system V(F,E,I) ,then build each hierarchy in detail, integrating independent phenomenon. 1)Partial cause /effect analysis : δV(F,E,I)/ δp= δV1(F)/ δp+ δV2(E)/ δp+ δV3(I)/ δp . 2)Primary evaluation: δV/δp (gradient/grade), quick/slow (t), large/small (x), tough/fragile, strong/weak (q), beautiful/dirty, bright/dark (h), expensive/cheap, rich/poor (m). 3)Secondary evaluation:δ2V/δp2 (acceleration/inertia/potential), life evaluation (t), spread characteristics, broad spectrum evaluation (x), safety, reliability evaluation (q), public opinion, reputation, use-related evaluation (h), money making characteristics, economic evaluation(m). 4)Multifarious evaluation δ2V/δp1δp2: System V is revised from different viewpoints.             δ2V/δmδt: change of stock prices. δ2V/δhδt: reputational future risk in time history. 5)Sequence order of evaluation time: The decision making is handled depending on a situation to develop one by one. The conclusion highly depends on time processing.  6)System V is classified to be function separated type and function integrated type, which results in big influence on performance evaluation in decision making(δ2V/δp1δp2 type). As the two-dimensional(X,Y)problem, the expression method of block diagram is discussed. It should be orthogonally designated by independent phenomenon each other. In X-Y axis, time(t),space(x), money(m),humanity(h),quality/quantity(q) are usually chosen as the rating index which are mutually exclusive and independent phenomenon each other. As a model, a risk diagram (occurrence probability-hazard relation) is used. In which for X-Y axis, rating index m/t are orthogonally designated. Furthermore, division of risk category A,B,C,D are made as risk matrix and used for risk management/control. The shape of this block domain highly depends on nature law (probability density function). The shape factor k has some properties: 1) k>1,too active/top heavy type,2) k=1, stable/natural type,3) k

Chairs
avatar for Anand Kumar

Anand Kumar

Systems Achitecture and Engineering
Anand Kumar has more than 20 years of Industrial experience in Systems architecture and engineering. He has been a researcher in Architecture and Business systems for more than a decade. His interests are in Business Systems, Architecture and Digital Product-Service Systems. He has... Read More →

Monday July 25, 2016 4:30pm - 5:00pm MDT
ECCR 1B51

4:30pm MDT

The Reconstruction of Systems Paradigm: Study on the Idea and Model for Boundary-Balance of Nonlinear Society
2770 The development of contemporary China is in a unique complex situation which refers to a nonlinear system situation stems from the complex interactions among elements, structure, function and environment of Chinese social system. One of important features of this complex situation is the unpredictability of system evolution at the edge of chaos. One fundamental dilemma for Chinese social system in transition is how to build a paradigm to adapt to this complex situation.While the endeavors to transplant “linear ideal model”from Western society failed, and the “Simple Science Paradigm”which once dominated Chinese society is deep in crisis now. The serious environmental problems derived from these endeavors force China to build a new approach related to green development. As one of important thought sources to build the paradigm to adapt to this complex situation, process philosophy provides us with enlightening thinking tools. First, ontologically speaking, process philosophy help us to understand interactions between human activity systems and natural systems from the perspective of time-space-matter relationship. Second, epistemologically speaking, process philosophy emphasizes the construction of “organism” knowledge at the level of life community. Third, methodologically speaking, process philosophy attempts to rebuild a co-existence relationship between human activity systems and natural systems with the “prehension” methodology. We believe that the critical steps for solving the fundamental dilemma for the development of contemporary China include--focus on the deep contradictions between current economic development and environmental protection, taking process philosophy as one of important thought sources, based on modern systems science and complexity research, popularizing the new idea of Eco-society, rebuilding a paradigm for social system with the characteristic of the continuous emergence of sustainability, and promoting the continuous evolution of this paradigm in practice.

Chairs
avatar for Mag. Stefan Blachfellner

Mag. Stefan Blachfellner

SIG Chair: Socio-Ecological Systems and Design, Bertalanffy Center for the Study of Systems Science
https://about.me/bstefan

Monday July 25, 2016 4:30pm - 5:00pm MDT
ECCR 200
 
Tuesday, July 26
 

1:30pm MDT

A Whole Systems Approach to Education Redesign: A Case Study on the Need for Inter-Generational Perspectives and Inclusion
2740 This study was commissioned by the Global Education Futures forum for presentation at its fourth International Conference in Moscow, Russia, from 29 February to 2 March 2016 (http://edu2035.org/#program). The objective was to conduct field research with a special focus on the vision of the future of education held by young people. This report presents some views and perspectives of my generation regarding what they want education to be like in the future. In northern California, my teachers Ms. B and Mr. Wahanik used the framework of questions and activities that my father and I developed to gather this kind of information by running a sort of “focus group” with my 10th Grade class and to find out what their views, perspective, opinions, ideas, hopes and concerns are regarding this theme. This group consisted of mainly 15 and 16 year olds, and there are around 40 students in my class. They had less than an hour to run the whole process, but everyone already knew each other really well so they could go quickly through the process, as described in this report. A similar process was run with a group of young people in Buenos Aires, Argentina. Here I had to work with people whom I had never met before and who also didn't know each other at all. We had exactly 12 students from a variety of public and private schools with an age range from 12 to 17 years old. However, we had a total of three hours with them, so we could do an icebreaker and take our time to move through the whole thing. In both cases (California and Argentina), the idea was to engage young people in a series of structured creative Future Thinking adventures that helped them “invent” what education (learning and teaching) should be like in the year 2035. The idea behind this is that educators and those involved in the systemic re-design of education systems might want to include this kind of data and these kind of perspectives in the work they are doing. I would like to present my findings at the ISSS and to see whether others think more of this kind of work should be done.

Chairs
avatar for Dr. Alexander Laszlo

Dr. Alexander Laszlo

President, Bertalanffy Center for the Study of Systems Science
SIG Chair: Leadership and Systemic InnovationThe LaSI SIG focuses on the formal area of research related to the theme of systemic innovation. As a place where change leaders and change makers team up with systems scientists to co-create impactful innovations, it aims to catalyze action... Read More →

Tuesday July 26, 2016 1:30pm - 2:00pm MDT
ECCR 1B51

1:30pm MDT

An Integrative Model of Four-Phase Adaptive Evolution in Organizations
2793 How do organizations become order-created and extinct through emergence and immergence in their evolutionary dynamic states? How macrosimplicity emerges from microcomplexity and how sophisticated behavior emerges from the interaction of relatively simplistic parts? Organization scholars have debated those questions for decades, but only recently have they been to gain insight into combining the linear and non-linear dynamics that lead to organizational bottom-up emergence and top- down immergence by explorative and exploitative learning, through the use of the complexity science. Two intriguing features of complex systems have been discussed in this paper: simple behavior at the high level emerging from convoluted underpinnings, and sophisticated behavior at the low level immerging from simple underpinnings. Complexity theory has sometimes concerned itself with the one sort of bottom-up emergence, sometimes with the other top- down immergence, and sometimes it seems to aim for both at the same time, seeking to explain behaviors that are both surprisingly stable and surprisingly sophisticated. Studied for organization science research, this paper summarizes these literatures, including the first comprehensive review of macro-simplicity and micro-complexity, cybernetic modernism, chaotic postmodernism and organizing postmodernity’s chaos in each of the 20 complexity science disciplines. In doing so, the paper makes a bold proposal for a discipline of organizational bottom-up emergence and top- down immergence by explorative and exploitative learning, and proposes an integrative model of four-phase adaptive evolution in organizations. The paper begins with a detailed premise of organizational theories, models and phenomena of order-creation and extinction, and then rigorously maps the processes of order-creation and extinction discovered by that complexity science to identify a four-phase adaptive evolution model in organizations. By way of conclusion, the author expects the four-phase adaptive evolution model could be applied to enact bottom-up emergence and top- down immergence by explorative and exploitative learning within and across organizations. Key words: bottom-up emergence, top- down immergence, exploration, exploitation, four-phase adaptive evolution

Chairs
avatar for David Rousseau

David Rousseau

Founder & Managing Director, Centre for Systems Philosophy
SIG Chair: Research Towards a General Theory of SystemsSIG Chair: Systems Philosophy Dr. David Rousseau is the Founder and Managing Director of the Centre for Systems Philosophy, which promotes the use of Systems Philosophy as a methodology for addressing problems that require both... Read More →

Tuesday July 26, 2016 1:30pm - 2:00pm MDT
ECCR 265

1:30pm MDT

How Teaching Cybernetics, in any Discipline, Can Bring Forth Systemic Change
2836 One way educators can work toward meaningful change in socio-ecological systems is to foster transformative change in students’ thinking. Since today’s students are tomorrow’s decision-makers, it can be argued that we have a responsibility to help students develop an understanding of how knowledge is constructed so that they might take responsibility for how they make sense of our world and see the connection between knowing and acting. Specifically, the reform in thinking needed is from our culturally conditioned habits of reductionism, duality, and linear thinking to more relational, systemic thinking. Educators are largely responsible for shaping the minds, values, and perceptions of students. We hope to inspire more educators to take their responsibility to heart and foster the kind of complex thinking that students will need to address the increasingly complex problems of our pluralistic world. In this presentation we will share our experiences, as teacher and student, in Creative Systemic Studies, an online doctoral program founded on the principles of cybernetics and systems thinking. Since epistemological change is transdisciplinary, it does not matter what discipline we teach in when we attempt to change minds. The Creative Systemic Studies program was designated a non-clinical Marriage and Family Therapy degree, yet students’ transformative learning experiences were not discipline-specific; they were triggered, in part, by learning cybernetics. In fact, students frequently testified that cybernetics changed their personal relationships and how they attended to the issues they were involved in, including homelessness, coaching youth, missionary work, grassroots organizing for social change, and therapeutic practices. Using a few concepts from cybernetics as examples - control, feedback, and distinctions - we will show how the principles of cybernetics can be creatively presented and integrated into any course of study. And we will show how these concepts influenced the way students think and know. We will also use these examples to highlight the fundamental principle of second order cybernetics which is that the observer is inextricable from - and responsible for - her observing. After introducing students to the subjective nature of interpretation and engaging this topic from multiple perspectives, students begin to see how their biases, values, and past experiences influence how they make meaning. Our knowing is necessarily self-referential and participatory. Cybernetics, General Systems Theory, chaos and complexity theories each have differences and a range of interpretations yet they are unified in that they all indicate a way of thinking that is intrinsically different from the reductionist/objectivist/deterministic orientation of modernist, rational thought. We use cybernetics as our exemplar for teaching students to think differently because we like it so much, but any of these theories would represent, and foster, epistemological change. We assert that changing minds has profound consequences because habits of mind become habits of action. Furthermore, every way of knowing contains an ethical trajectory. The ethical trajectory of cybernetics includes knowing that since we construct meanings, we are responsible for them - and we must respect this responsibility in others. Inspiring and developing in students a paradigmatic change from objectivity to a self-referential, participatory epistemology fundamentally concerned with responsibility is a nontrivial way that educators can foster meaningful change in socio-ecological systems. Additionally, it makes teaching even more exciting and satisfying.

Chairs
avatar for Louis Klein

Louis Klein

SIG Chair: Organizational Transformation and Social Change, louis.klein@segroup.de
Vice President Conferences (2015), International Society for the Systems Sciences SIG Chair:    Systems Applications in Business and Industry SIG Chair:    Organizational Transformation and Social ChangeLouis Klein is an internationally recognized expert in the field of systemic... Read More →

Tuesday July 26, 2016 1:30pm - 2:00pm MDT
ECCR 1B55

2:00pm MDT

The Illusion of Technology: A Generational Perception on the Need for a Human-Centered Approach in Dealing with Developments of Science and Technology
2842 We are at the turning point of an era with a huge potential of change in which humanity can decide to finally address the failures of our economic, social, governance and belief systems. However the current narrative build around the hopes of being saved by science and technology is getting more and more traction into a society in which digitalization, the illusion of zero marginal costs, sharing economies and big data seems to be the answer to our most pressing problems. This is ironical, since science and technology (S&T) have been not only central to the development model followed by human societies in the last centuries but often very effective instruments of mass destruction, environmental degradation and social exclusion. S&T have been definitely part of the problem, a key component of our model of economic development, and not only an exogenous factor as considered by mainstream economics, which anyway recognize their crucial role to improve productivity and sustain long-term growth. But they are also deemed to be the core of the solution, a paradoxical vision grounded in the idea that finding a technical fix is a good way to avoid the less comfortable question of how power and wealth are distributed in society and with what consequences. In particular the younger generation seems to be distracted by the excitement about technological and scientific new developments and its untapped potential. Addressing the systemic underlying root causes which are the real drivers of our problems is too complex compared to building the new app and the social enterprise that goes with it. While for previous generations changing the world for the better would require also political and social innovations, now it seems that S&T has even displaced every other source of hope. The launching of the latest digital artifact creates a widespread frenziness, but also a true and exciting entrepreneurial spirit is mobilized by the potential of technologies to address human challenges. In a sense, we put S&T at the core of societal evolution, or to say the least we do not conceive any transformation without them playing a significant role, and this is also why we think they should rescue us from all disasters, even those provoked by ourselves. In light of these developments I would like to emphasize the following questions in my contribution to ISSS 2016: How can we go beyond a paradigm of “S&T solutionism” and channel the huge potential these developments will bring? How can we change the route towards a future in which humanity has to adapt to digitalization and its consequences, instead of putting digitalisation at the service of humanity?

Chairs
avatar for Louis Klein

Louis Klein

SIG Chair: Organizational Transformation and Social Change, louis.klein@segroup.de
Vice President Conferences (2015), International Society for the Systems Sciences SIG Chair:    Systems Applications in Business and Industry SIG Chair:    Organizational Transformation and Social ChangeLouis Klein is an internationally recognized expert in the field of systemic... Read More →

Tuesday July 26, 2016 2:00pm - 2:30pm MDT
ECCR 1B55

2:30pm MDT

The Lighthouse - Innovating the Systems Sciences System
2771 The authors of this abstract sought to discover a way to communicate key systemic insights to a wider audience and the integration of those insights in real-life systems where they will have impact. The Lighthouse is a prototype alternative to traditional methods of disciplinary scholarship. The Lighthouse is a result of applying systems research, specifically systemic innovation, to the very system by which systems research is performed and communicated. A designed socio-technical system is added to complement the disciplinary organization, by taking advantage of recent advances in knowledge media research and development, and contemporary communication design. By design, The Lighthouse undertakes to fulfill in the systems movement, and in the CET SIG in particular, a function analogous to a lighthouse – of showing ‘stray ships’ (various change or sustainability or thrivability initiatives) a way to the safety of a ‘harbor’, which is an outpost of a ‘continent’ where issues can be handled and understood systemically. The Lighthouse focuses on a single key issue: Whether the evolution and control of core societal systems can be relegated to free competition (“the market”) – or whether it must be informed by systems research and insights. The current prototype has three phases: (1) synthesis or federation of points of view and results relevant to our issue, through a media-enabled transdisciplinary dialog of experts; (2) rendering the results of Phase One in accessible, communicable and engaging formats by applying state-of-the-art communication design; (3) strategic placement of the results of Phase Two in public sphere, and public awareness. The Lighthouse prototype is designed to evolve continuously, by observing how it meets the real-world challenges, and assimilating insights and results from relevant disciplines, notably the systems research and the knowledge media R&D. In this way this prototype of media-enabled transdisciplinary research is also conceived as a prototype ‘boundary object’ linking two communities and interests – systems research, and IT innovation. By it, systemic insights are allowed to directly influence technological, and also social-systemic innovation. The Lighthouse is part of our initiative to develop the CET SIG as a systemic innovation hub, where the emergence of better ways of transdisciplinary and transcommunity cross-fertilization is being curated.

Chairs
avatar for Dr. Alexander Laszlo

Dr. Alexander Laszlo

President, Bertalanffy Center for the Study of Systems Science
SIG Chair: Leadership and Systemic InnovationThe LaSI SIG focuses on the formal area of research related to the theme of systemic innovation. As a place where change leaders and change makers team up with systems scientists to co-create impactful innovations, it aims to catalyze action... Read More →

Tuesday July 26, 2016 2:30pm - 3:00pm MDT
ECCR 1B51

3:30pm MDT

Opening the Field of Linguistic Design for Thrivability
2819 Language functions as a complex adaptive system. With time and circumstance, both its building blocks—the words that comprise it—and the guidelines according to which those blocks can be arranged—its grammar—are subject to evolution. Perhaps because it is often considered a function of culture, the question of how such linguistic evolution might be acted upon with intention is rarely considered. Yet language is no more a function of culture than culture of language. The two act interdependent and interdeterminant. And the manner in which disparate elements such as academic developments, political correctness, and pop culture drive linguistic change is both uncoordinated and acting on relatively weak leverage points. The foundational concern of this paper will be the ways in which the structures of language affect human behavior. It will employ existing research from the field of comparative economics to suggest the importance of approaching linguistic evolution from an idealized design perspective arguing that sustainability and thrivability are outcomes which, to be realized, must be supported by the language employed in their pursuit. Though this paper will, to some extent, address the role of neologisms in linguistic evolution, its focus will be on the more foundational aspects of language—on grammatical structures such as verb tense, possessives, pronouns, and article usage—and the behaviors they most readily facilitate. Just as a systems approach to organizational behavior must look beneath events and patterns for the structures and mental models that underlie them, this paper is intended to serve as the starting point of large scale inquiry into the mental models that are embedded in the linguistic structures of English and how they might be altered to better support human wellness. As the first global language, English is not only a convenient central test case for the inquiries of this paper, it is also an impactful one. In investigating the structures of English and the mental models they embody, the field of comparative linguistics will be pertinent providing points of comparison from other languages. By seeing what variations of language have evolved elsewhere, the project of envisioning an idealized version of English will provide itself with a range of possibilities upon which to draw. In that language is adaptive and contextual, it will not be possible for this paper to prescribe a final version of what is being proposed. Rather, the goals of the paper will be to propose the importance of this design question alongside suggestions about possible directions responses to it might take. In that its central argument will be that linguistic design is a field to which time and effort should be dedicated, this paper will also have to address the question of whether the changes proposed are realistic. In arguing that they are, evidence of how this approach has already been successfully employed and a summary description of how existing resources and networks might be employed in its realization will be presented.

Chairs
avatar for Louis Klein

Louis Klein

SIG Chair: Organizational Transformation and Social Change, louis.klein@segroup.de
Vice President Conferences (2015), International Society for the Systems Sciences SIG Chair:    Systems Applications in Business and Industry SIG Chair:    Organizational Transformation and Social ChangeLouis Klein is an internationally recognized expert in the field of systemic... Read More →

Tuesday July 26, 2016 3:30pm - 4:00pm MDT
ECCR 1B55

4:00pm MDT

Analogical Reasoning on Creation
2892 People get empirical knowledge through experience. It makes people being available to imagine something and reason several possible-world which could be happened in the future. Here are differences between knowledge by education and knowledge by experience. Empirical knowledge is not for reaching a certain answer what is required at education. This is useful when we need to have multi-answers and making a response to unpredictable objects. To experience world is meant that something interacts with objects and subjects with cognition. This zone could be called ‘the field where cognition and act coexist’. Furthermore, if we start to concern relations between cognition and act, the following questions are arisen “how to transfer feeling by body to perception in which is cognition part?” and “how people have utilized those abilities in real world?”. I focus on creation process to the above questions. In creation, human would utilize their whole knowledge spontaneously. Thus it is produced by creativity which one of the most important abilities in creation, even though we don’t know where is creativity and what is it precisely. In this paper, I argue how analogical reasoning works between cognition and target object. I discuss possible way how this research reaches to enhance creations in creativity way.

Chairs
avatar for Dr. Alexander Laszlo

Dr. Alexander Laszlo

President, Bertalanffy Center for the Study of Systems Science
SIG Chair: Leadership and Systemic InnovationThe LaSI SIG focuses on the formal area of research related to the theme of systemic innovation. As a place where change leaders and change makers team up with systems scientists to co-create impactful innovations, it aims to catalyze action... Read More →

Tuesday July 26, 2016 4:00pm - 4:30pm MDT
ECCR 1B51

4:00pm MDT

How to Design All Together? The Triple Bottom Line
2833 Business´ owners want their enterprises are profitable, and that profits stay forever. In other words, they want business economic and financially sustainable. Citizens want business socially responsible, and also environmentally careful, and contribute to recover it. The liquid societies (Bauman, 2000) create and destroy markets very quickly, and shareholders demand CEOs adapts their enterprises to those changes, maintaining profitable. Corruption scandals promote strong society claims, demand ethic behaviors. There are more sights about the environment. Paris signature authorities tell “these are not enough” (Paris Climate Agreement, 2016). There are theoretical papers about each of these aspects, but there aren’t a holistic view trying to find systemic answers. How have enterprises that are simultaneously sustainable, ethically behavior in all domains, and environmentally responsible: Are enough to choose a CEO who can make the triple goals? Can move the enterprise with a consulting work to the triple ends? Must promulgate laws, with strong penalties, to force enterprises to obtain the triple line? Is it necessary to (re-) design the enterprise to put on the way to the triple results? The first three questions are not enough. To choose a CEO with those capabilities is possible only for a few numbers of organizations, if it is possible. Consulting is, by definition, limited in time, and it needs a corporation’s behavior for the entire life. And if we have laws about, they cannot explain how to do it. It’s necessary that ALL the company, their members and all around collaborate and coordinate to have a chance to arrive. In recent times there are proposals to a new way of enterprises, with linked profit business with social impact and environment, call hybrid organizations. They try to generate at the same time, economic, social and environmental value (triple bottom line). Combine the current concepts of sustainability and systemic impact on all the dimensions requires a new design. In general, it is observed that the treatment of comprehensive way concerned is omitted. It focuses from one or another aspect, emphasis on certain features, but not about taking the overall design, which makes it difficult to appear companies at the same time achieve sustainability on all fronts. Those that exist are shown as successful examples, but is veiled how they succeeded, and the small number shown not allow inferring a viable design. It is about advancing the design companies that meet all requirements and work in line with the systemic dimensions that define Sustainability. Design tools and business models wide target. How to design organizations broad objectives that are sustainable from economic, social and environmental perspective, taking into account its surroundings and prospects? Cybernetic models available, such as VSM, systemic tools developed in recent decades, as models of Ackoff, Ulrich, Jackson, Checkland, Bosch, among others, suggest that counted with enough devices to address the design of this new type of companies. It is necessary to consider the behaviors of businessmen, culture and expectations, since what is being proposed are, to some extent, a Copernican shift in the way of acting and directing companies. It is necessary to consider that it will be necessary not only explain the design, especially its possible results and advantages compared to traditional. Today, when Millennium Development Goals post 2015 seeking simultaneously to defeat the scourge of poverty, and lead humanity to sustainable development, we must make all the productive forces in each place are aligned to work simultaneously on all fronts: economic, social, environmental, etc. This requires having previously developed academic responses, otherwise treated no objectives or goals but mere wishful thinking. Perhaps this is a small step in the right direction.

Chairs
avatar for Louis Klein

Louis Klein

SIG Chair: Organizational Transformation and Social Change, louis.klein@segroup.de
Vice President Conferences (2015), International Society for the Systems Sciences SIG Chair:    Systems Applications in Business and Industry SIG Chair:    Organizational Transformation and Social ChangeLouis Klein is an internationally recognized expert in the field of systemic... Read More →

Tuesday July 26, 2016 4:00pm - 4:30pm MDT
ECCR 1B55
 
Thursday, July 28
 

1:30pm MDT

Design for Social Innovation: Integrating the Theory and Practice of Action Research and Participatory Design for Organizational and Social Impact
2810 This paper explores the similarities, differences and potential synergy between action research, social systems design, and design thinking. As three distinct participatory approaches to systemic change with different origins and assumptions, the authors explore ways in which these approaches can converge for maximum social impact. Kurt Lewin is often referred as the originator of action research within the field of social psychology. In the late 1930s he created the foundation for organizational behaviour and introduced an interactive cycle of reflection, discussion, decision and action which empowered people affected by a problem to cooperate in its solution. Social systems design, as developed by Bela H. Banathy in the 1980s, is a disciplined future creating inquiry that synthesizes and grows from the soft systems science tradition. Its emphasis is in designing the ideal system through a values-driven dialogic process that engages stakeholders into an exploration of “what should be” rather than trying to fix the existing problems. Design thinking is a recent articulation of a similar way of thinking but with the intention of addressing the lack of creativity and innovation capacity in business corporations. Tim Brown coined the buzzword in 2009 and his design company, IDEO, became the leader is popularizing ‘human-centered design” for creative problem solving. Although there are differences in language, assumptions, and methodological approaches, these three participatory processes share the intention of involving people in the creation of new possibilities that will directly impact them. When looking at the complexity of social problems, it is becoming clear than trying to “fix” the current social systems is not sufficient to create a peaceful and sustainable culture. A systemic, future-oriented, and ideal-informed design orientation is necessary to innovate the evolution of human institutions. Education is one of those institutions that is ripe for radical redesign. Rather than continuing to prepare our youth for a broken socio-economic system that does not produce equity and is destroying the environment, we need to empower future generations to engage in a learning process that explores the edge between the known and unknown, and in the spirit of design, involves them in the design and experimentation of new possibilities. As part of the inquiry, the authors share insights, lessons and reflections from the experience of designing an alternative high school program. A group of stakeholders from a charter school in California engaged in the redesign of single subject classes to trans-disciplinary workshops, replacing grades with competency-based assessments such as digital badging, and incorporating deeper experiential learning throughout the high school curriculum. Designing a school in collaboration with the stakeholders was enlightening beyond developing pedagogical innovations customized for the community of learners. Concepts in human-centered design were critical to assist stakeholders, especially traditionally trained teachers, in embracing the systemic changes. Emotional challenges, such as anxiety and apprehension, were addressed through design-thinking principles, such as empathy. The authors learned how elements of each of the three methodologies of action research, social systems design and design thinking each contribute critical components in the process of creating systemic change. This paper explores the similarities, differences and potential synergy between action research, social systems design, and design thinking. As three distinct participatory approaches to systemic change with different origins and assumptions, the authors explore ways in which these approaches can converge for maximum social impact. Kurt Lewin is often referred as the originator of action research within the field of social psychology. In the late 1930s he created the foundation for organizational behaviour and introduced an interactive cycle of reflection, discussion, decision and action which empowered people affected by a problem to cooperate in its solution. Social systems design, as developed by Bela H. Banathy in the 1980s, is a disciplined future creating inquiry that synthesizes and grows from the soft systems science tradition. Its emphasis is in designing the ideal system through a values-driven dialogic process that engages stakeholders into an exploration of “what should be” rather than trying to fix the existing problems. Design thinking is a recent articulation of a similar way of thinking but with the intention of addressing the lack of creativity and innovation capacity in business corporations. Tim Brown coined the buzzword in 2009 and his design company, IDEO, became the leader is popularizing ‘human-centered design” for creative problem solving. Although there are differences in language, assumptions, and methodological approaches, these three participatory processes share the intention of involving people in the creation of new possibilities that will directly impact them. When looking at the complexity of social problems, it is becoming clear than trying to “fix” the current social systems is not sufficient to create a peaceful and sustainable culture. A systemic, future-oriented, and ideal-informed design orientation is necessary to innovate the evolution of human institutions. Education is one of those institutions that is ripe for radical redesign. Rather than continuing to prepare our youth for a broken socio-economic system that does not produce equity and is destroying the environment, we need to empower future generations to engage in a learning process that explores the edge between the known and unknown, and in the spirit of design, involves them in the design and experimentation of new possibilities. As part of the inquiry, the authors share insights, lessons and reflections from the experience of designing an alternative high school program. A group of stakeholders from a charter school in California engaged in the redesign of single subject classes to trans-disciplinary workshops, replacing grades with competency-based assessments such as digital badging, and incorporating deeper experiential learning throughout the high school curriculum. Designing a school in collaboration with the stakeholders was enlightening beyond developing pedagogical innovations customized for the community of learners. Concepts in human-centered design were critical to assist stakeholders, especially traditionally trained teachers, in embracing the systemic changes. Emotional challenges, such as anxiety and apprehension, were addressed through design-thinking principles, such as empathy. The authors learned how elements of each of the three methodologies of action research, social systems design and design thinking each contribute critical components in the process of creating systemic change.

Chairs
avatar for Louis Klein

Louis Klein

SIG Chair: Organizational Transformation and Social Change, louis.klein@segroup.de
Vice President Conferences (2015), International Society for the Systems Sciences SIG Chair:    Systems Applications in Business and Industry SIG Chair:    Organizational Transformation and Social ChangeLouis Klein is an internationally recognized expert in the field of systemic... Read More →

Thursday July 28, 2016 1:30pm - 2:00pm MDT
ECCR 200

1:30pm MDT

Post-Normal Science V Citizen Science: An Exploration of Custom and Practice
2860 We live in an age of complexity and complexity gives rise to uncertainty. Recognition of this, over 25 years ago, led to the suggestion of post-normal science which provides a method to support the explicit recognition and management of uncertainty. The suggestion of such a method, though, challenges the pre-eminent status of scientific knowledge and, as such, it is hardly likely to find support from scientists or the policy makers they advise who expect certainty and hard evidence. Hence it is not suprising to find there has not been a massive take-up of post-normal science. Yet, at the same time, another alternative form of science, citizen science, which also challenges the scientific establishment in suggesting that the interests of citizens should drive the research agenda, has grown signficantly. So, why has one achieved traction and the other not? In this paper, we look to address this question by exploring the custom and practice of both post normal science and citizen science.

Chairs
avatar for Mag. Stefan Blachfellner

Mag. Stefan Blachfellner

SIG Chair: Socio-Ecological Systems and Design, Bertalanffy Center for the Study of Systems Science
https://about.me/bstefan

Thursday July 28, 2016 1:30pm - 2:00pm MDT
ECCR 265

2:00pm MDT

Proposing Values and Practices for a Culture of Organizational Ingenuity: Hacking Systems Thinking to Pursue the Preposterous and Produce the Impossible
2812 What is the difference between people outside, or within, organizations that look at a problem with a lot of limits and see unusual and new possibilities, and those who look at a problem with a lot of limits and see no way out? How would an organization intentionally transform its worldview and its problem-solving practices to creatively reconsider its own structures, policies, and assumptions when solutions to key needs and complex problems are limited or prevented by institutional or resource constraints? Education, government, and business leaders agree that creativity and innovation are essential for future organizational success and even survival, yet leaders are often blinded by past policies, organizational goals, or assumptions about resources and systems relationships when faced with complex and changing problems. However, research suggests that there are qualitative differences between individuals, teams, and organizations that become cleverly, resourcefully innovative in the face of complex problems under constraints, and those who do not. The culture and practices that activate shrewd, transdisciplinary, and unconventional problem-solving in the face of resource limits and other constraints are associated with a familiar, but largely unexamined, concept called ingenuity. Most frequently, ingenuity has been used to describe innovative solutions that are surprisingly smart, unconventionally resourceful, and contextually superior, often completely changing an institution or social-technical culture. In this messy intersection where creative, innovative problem-solving is at once demanded and prevented, ingenuity is the human factor necessary to hack the hairball, to pursue the impossible by being willing to seek unconventional connections arising from diverse knowledge, skills, and perspectives; dialogue at the margins; resilience; imagination; creative and resourceful improvisation; and systems thinking. The culture and practices of organizational ingenuity integrate systems thinking into a framework designed to provoke the unconventional approaches to complex problems that produce exponentially better solutions for sustainable business and a sustainable world. As organizations develop broad-based cultures and capacities for ongoing innovation, there is a need to distinguish the concept and value of an innovation culture that integrates systems thinking and the resilient, empathetic, value-driven, collaborative, improvisational, diverse, counter-intuitive, paradoxical capacities of ingenuity. Keywords: systems thinking, innovative, business, resilience, human factor

Chairs
avatar for Louis Klein

Louis Klein

SIG Chair: Organizational Transformation and Social Change, louis.klein@segroup.de
Vice President Conferences (2015), International Society for the Systems Sciences SIG Chair:    Systems Applications in Business and Industry SIG Chair:    Organizational Transformation and Social ChangeLouis Klein is an internationally recognized expert in the field of systemic... Read More →

Thursday July 28, 2016 2:00pm - 2:30pm MDT
ECCR 200

2:30pm MDT

Title: Collaboframework - A Framework for Sustaining Socio-Ecological Systems through Dialogical Knowledge and Action Space
2782 In this paper we discuss how socio-technical intervention in socio-ecological systems can increase understanding of burning issues that drives systems unstable and unbalanced. Using the challenge of drilling oil in the Yasuni National Park ecosystem in Ecuador and balancing it with the diversity of socio-cultural inhabitants in the ecosystem, we show how we can develop a space for evolution of mutual understanding of a CoI (Community of Interest) consisting of multiple system stakeholders and what mechanisms can help us in articulating concrete actions happening across different domains - ranging from scientific findings and publications all the way to artistic and emotional-engaging interventions, evolving in this way from mere transdisciplinary to rather holistic approach of solving complex socio-ecological problem. Paper presents outcomes of the pre-event, at-event, and post-event interventions at the workshop “Which data to look for? How to build thriving knowledge communities?“ related to the BunB conference. Our unique approach was to provide CollaboFramework (consisting of CollaboScience and CollaboArte socio-technical systems) that creates a dialogical space for mapping mutual fuzzy and multi-truth knowledge of known issues and guiding evolution of that initial knowledge through the set of dialogical interactions among stakeholders. CollaboFramework system is a novel approach that unites infrastructure for the collective-knowledge space with the set of socio-technical tools that incrementally evolve that collective-knowledge weaving. With CollaboFramework we recognize uniqueness and complexity of transdisciplinary dialogue of CoIs that aim solving wicked problems. We provide support for modeling personalized socio-technical processes governing each of those communities. Processes coordinate different components of CollaboFramework in the most efficient way for particular CoI and challenges it is facing at the moment. Processes guided with socio-psychological insights help CoIs to converge multidisciplinary knowledge into coherent and landscaped knowledge with the set of insights that will be capable of governing future actions and interventions in the problem-space, namely creating public media and artistic projects that will engage society and let all relevant stakeholders to be heard and recognized. In the future iterations of the CoI events, this will bring additional insights and start another iteration in the spiral of CollaboDialogue and calls for actions. In this paper we discuss how socio-technical intervention in socio-ecological systems can increase understanding of burning issues that drives systems unstable and unbalanced. Using the challenge of drilling oil in the Yasuni National Park ecosystem in Ecuador and balancing it with the diversity of socio-cultural inhabitants in the ecosystem, we show how we can develop a space for evolution of mutual understanding of a CoI (Community of Interest) consisting of multiple system stakeholders and what mechanisms can help us in articulating concrete actions happening across different domains - ranging from scientific findings and publications all the way to artistic and emotional-engaging interventions, evolving in this way from mere transdisciplinary to rather holistic approach of solving complex socio-ecological problem. Paper presents outcomes of the pre-event, at-event, and post-event interventions at the workshop “Which data to look for? How to build thriving knowledge communities?“ related to the BunB conference. Our unique approach was to provide CollaboFramework (consisting of CollaboScience and CollaboArte socio-technical systems) that creates a dialogical space for mapping mutual fuzzy and multi-truth knowledge of known issues and guiding evolution of that initial knowledge through the set of dialogical interactions among stakeholders. CollaboFramework system is a novel approach that unites infrastructure for the collective-knowledge space with the set of socio-technical tools that incrementally evolve that collective-knowledge weaving. With CollaboFramework we recognize uniqueness and complexity of transdisciplinary dialogue of CoIs that aim solving wicked problems. We provide support for modeling personalized socio-technical processes governing each of those communities. Processes coordinate different components of CollaboFramework in the most efficient way for particular CoI and challenges it is facing at the moment. Processes guided with socio-psychological insights help CoIs to converge multidisciplinary knowledge into coherent and landscaped knowledge with the set of insights that will be capable of governing future actions and interventions in the problem-space, namely creating public media and artistic projects that will engage society and let all relevant stakeholders to be heard and recognized. In the future iterations of the CoI events, this will bring additional insights and start another iteration in the spiral of CollaboDialogue and calls for actions.

Chairs
avatar for Mag. Stefan Blachfellner

Mag. Stefan Blachfellner

SIG Chair: Socio-Ecological Systems and Design, Bertalanffy Center for the Study of Systems Science
https://about.me/bstefan

Thursday July 28, 2016 2:30pm - 3:00pm MDT
ECCR 265

2:30pm MDT

Toxic Leadership in Context
2815 A sizeable body of research and literature is developing about toxic leadership and workplace bullying. Our earlier work found distinctions between tough bosses and true bullies in the workplace. A later study showed that military officers were able to clearly identify differences between hard but effective leaders and toxic leaders. That work was extended into the organizational climates which seem to promote toxic leaders and bullies. Other colleagues have explored potentials for changes in bullying behavior through executive coaching interventions, noting that some executives simply lack awareness of their behaviors, or the effects on those around them. The focus of this paper is the synthesis of earlier findings, to begin a more systemic understanding about the relationships between individual, organizational, and societal behaviors with respect to bullying and toxic leadership.

Chairs
avatar for Louis Klein

Louis Klein

SIG Chair: Organizational Transformation and Social Change, louis.klein@segroup.de
Vice President Conferences (2015), International Society for the Systems Sciences SIG Chair:    Systems Applications in Business and Industry SIG Chair:    Organizational Transformation and Social ChangeLouis Klein is an internationally recognized expert in the field of systemic... Read More →

Thursday July 28, 2016 2:30pm - 3:00pm MDT
ECCR 200

3:30pm MDT

A Framework for Understanding and Achieving Sustainability of Complex Systems
2737 This paper takes a systems approach to outlining a framework for the sustainability of complex systems. Complex systems have one or more functions that strongly interact with their environments, or meta-system in which they are embedded. The success of the system in interacting with its environment over an extended time frame depends on that system’s ability to regulate its activities, both internal and external so as to remain ‘fit’. The concept of fitness derives directly from the evolutionary theory of phenotypic traits and capabilities (behaviors) being selected for or against by the environment of the system. But it is generalized beyond the standard neoDarwinian biological process. The roles of adaptivity and evolvability and the mechanisms of a hierarchical cybernetic governance subsystem in maintaining these are advanced as necessary conditions for achieving sustainability. An operational definition of sustainability is advanced along with a set of necessary conditions that must obtain in order for complex systems to achieve it. Several systemic dysfunctional conditions are explored to show how complex systems fail to achieve sustainability by failure of the hierarchical cybernetic governance subsystem. Examples from several natural and human-built systems are used to demonstrate these conditions. Clarification of the meaning of complexity across a spectrum of system types is given. A definition of complexity based on hierarchical levels of organization is given to ground the discussion of the hierarchical cybernetic governance subsystem and justify its necessity to achieve and maintain stable dynamics in unstable environments. The purposes and uses of this framework are discussed and examples provided. A brief description of the use of systems analysis to explore and discover functional and dysfunctional subsystems within the hierarchical cybernetic governance subsystem and how this might provide insights for the design of better performing subsystems is also provided. The paper concludes with a projection of the benefits of applying this methodology to the governance of the human social system (HSS).

Chairs
avatar for Mag. Stefan Blachfellner

Mag. Stefan Blachfellner

SIG Chair: Socio-Ecological Systems and Design, Bertalanffy Center for the Study of Systems Science
https://about.me/bstefan

Thursday July 28, 2016 3:30pm - 4:00pm MDT
ECCR 265

3:30pm MDT

Creating Enduring Social Impact: A Model for Multi-Sector Transformational Change
2753 The nonprofit and public sectors are in the midst of a paradigm shift from addressing community concerns individually and competing with each other for existing funding to working collaboratively and thinking collectively across sectors to solve some of our most intractable social problems. This transition requires new approaches that challenge assumptions and generate new knowledge. Existing models for change, while theoretically sound, are difficult to adapt to multi-sector transformational change. Undertaking multi-sector transformational change is substantially different than the vast majority of change efforts that take place within a single organization, differing in scope, complexity, and leadership. This paper describes a new model specifically designed to address the unique needs of multi-sector change efforts. It is built on the theoretical framework of complexity science and complex adaptive systems, organization development, transformative and organizational learning, and multi-sector transformational change. Multi-sector transformational change efforts take place within highly complex systems, where stakeholders (components of the system) come together to do work that none of them can accomplish alone. This work requires participants to develop their adaptive capacity in response to a constantly changing environment where outcomes are uncertain and thus, cannot be planned for. Participants must also be capable of surfacing and challenging their own assumptions through transformative and organizational learning in order to create space for generative dialogue. These frameworks are essential to the success of multi-sector transformational change. The model consists of five phases: (1) discovery and dialogue; (2) deepening, refining, and assessing; (3) infrastructure, communication, and coordination; (4) ongoing implementation and progress reporting; and (5) learning, celebration, and sustainability. Phase 1 focuses on understanding current reality, identifying key stakeholders, building relationships, and creating a shared vision. Phase 2 continues to deepen and refine the work of Phase 1 while at the same time establishing a practice of reflection. Phase 3 initiates implementation and establishes feedback mechanisms. Phase 4 delves deep into implementation, launches feedback mechanisms, and looks ahead to sustainability. Phase 5 provides more formal evaluation of the project outcomes and processes and requires participants to decide whether the effort is completed or if it continues. These five phases represent a cycle that is designed to be iterative, building on new knowledge gained from the previous cycle. Aside from providing a new approach to multi-sector transformational change, the significance of this model is its adaptability and flexibility, with the caveat that certain critical processes not be omitted. Broad stakeholder representation is essential to mobilize and engage those who care about or are affected by the particular issue. Building strong relationships with those stakeholders, as well as sponsors, funders, and partner organizations, establishes robust connections that will serve to propel the project forward and reinforce the project during challenging periods. Identifying influential champions, those who reduce barriers, open doors, and make connections, provides the project with loyal advocates. Fully funding a facilitation, communication, and support organization enables organizational and community leaders to focus on the creation of new knowledge and provides a level of oversight that will maintain the momentum throughout the project. Developing the transformative learning capacity of all participants and weaving that together to create a learning organization will ensure that the wisdom of all participants is brought forth to understand the nuances of the issue and explore possibilities. These five processes provide the backbone for any multi-sector transformational change effort. Keywords: Multi-sector, Transformational Change, Transformative Learning, Organizational Learning, Complexity, Complex Adaptive Systems, Organization Development, Dialogue, Stakeholders

Chairs
avatar for Louis Klein

Louis Klein

SIG Chair: Organizational Transformation and Social Change, louis.klein@segroup.de
Vice President Conferences (2015), International Society for the Systems Sciences SIG Chair:    Systems Applications in Business and Industry SIG Chair:    Organizational Transformation and Social ChangeLouis Klein is an internationally recognized expert in the field of systemic... Read More →

Thursday July 28, 2016 3:30pm - 4:00pm MDT
ECCR 200

3:30pm MDT

Mapping the Macro-Level for Interdisciplinary Decision Making - A Visual Framework and Method
2920 Universities are organized into disciplines, but most real world problems are interdisciplinary. Holistic conceptual models could help to overcome this fragmentation in our thinking and allow a more multi-perspective view of issues. When analyzing complex problems in business or politics, there are a wide range of micro- and macro-economic factors involved. One of the most often used concepts in business literature is the so called PESTEL framework (Political, Economic, Social, Technological, Environmental, Legal) – some variations on this are PEST and PESTLE. The PESTEL framework is used for environmental scanning of risks and trends in strategic management. Despite its worldwide distribution there are known to be a couple of flaws with this framework. The selection of categories is questionable; the categories are often discussed in separate boxes and important interconnections between variables are lost. What is needed is a more systemic approach that does not cut complex issues into fragmented pieces but provides a more coherent picture. However it must still be easy and efficient to use in business practice. The goal of this current project is to build on the tradition of PESTEL but also to suggest some adjustments that would lift the concept up to new levels of analysis, application and visual representation. The new framework is the result of a cross-comparison of several dozen category frameworks used in business, politics and sustainability. The criteria for the development process and present version were a well-balanced selection of categories, practically useful for team work in the business context and beyond, and providing a better representation of important interconnections. The result is establishing a bridge between the PESTEL tradition and systems methods such as causal loop diagrams and thus allowing a more holistic view of complex issues. It allows visualizing global risks, megatrends or other topics of interest on the global or local level. Keywords: Problem solving, management, strategy, decision making, sustainable development, visualization, causal loop diagram, interdisciplinary, transdisciplinarity

Chairs
avatar for John Vodonick

John Vodonick

SIG Chair: Systemic Ethics, Exploratory Group: Business Systems Laboratory, Two Ravens Consulting
I teach, write and consult in the areas of corporate social responsibility, change management, organizational design and social ethics. Most organizations come to a place in their evolution when the needs of the stakeholders are not being met and if that continues to be the norm the... Read More →

Speakers

Thursday July 28, 2016 3:30pm - 5:00pm MDT
ECCR 245

4:00pm MDT

Transformative Learning Networks
2781 Learning networks combine multistakeholder collaboration with community-spanning interaction and exchange across sites and scales. They are inter-organizational voluntary collaboratives that support innovation and social learning to promote systemic change. Learning networks are often attempted in situations where existing institutional arrangements cannot address looming challenges, and change is thwarted by a combination of lack of capacity and a powerful status quo. The four learning networks we are examining address the challenges of ecological fire restoration, urban resilience, fostering adaptive capacity to climate change and other unprecedented challenges in developing countries, and the deep cultural divide between the academy and the public (also see our team website www.brugo.org). We will consider how these LNs increase capacity to transform complex adaptive systems in which they are embedded. Our definition of resilience is grounded in how collective action can purposefully reconfigure systemic relationships to promote a new and desired state. We will explore how learning networks can balance the autonomy that individual organizations and communities require with the cohesion required to catalyze transformative change in policy and institutions operating at higher spatial/temporal/organizational scales. Different kinds of learning take place at each of different network levels – it is the effective interweaving of these heterogeneous interactions that fosters transformative capacity. Learning networks are bridging organizations: they form a bridge between different ways of knowing in communities and organizations, and they bridge to alternative futures by fostering innovation. Learning networks disrupt old habits and foster new collaborative relationships, reinforcing participants’ shared ties and purpose while providing freedom to experiment with innovative approaches. Learning networks rely on effective design and ongoing facilitation to function effectively. Network facilitators or “netweavers” may be formally identified or may emerge from among network participants. These netweavers collaborate with participants in identifying goals and an effective network topology and infrastructure. Netweavers initiate activities that build community and promote a shared identity that provides the foundation for common practice and purpose. Ties within the network deepen over time as participants identify collaborative solutions. We will explore these features by drawing insights from the origin, design and netweaving of our four learning networks. We will show how effective learning networks possess a loose, light structure that allows them to learn and adapt as their membership becomes more confident and experienced, as new needs and opportunities are recognized, and as resources and institutional support require. We will also consider how network design is cross-scalar, combining interpersonal and group collaboration with network-spanning interaction and exchange. Finally, we will reflect on how networks foster transformative capacity, an idea that is both conceptually subtle and difficult to detect over the short timescale of our fieldwork. To the extent possible, our work is conducted by our being embedded in network leadership teams and actively participating in ongoing discussion about the network design and facilitation. We will also discuss how participatory action research and developmental evaluation frameworks enable this balance between participation and analytical engagement.

Chairs
avatar for Louis Klein

Louis Klein

SIG Chair: Organizational Transformation and Social Change, louis.klein@segroup.de
Vice President Conferences (2015), International Society for the Systems Sciences SIG Chair:    Systems Applications in Business and Industry SIG Chair:    Organizational Transformation and Social ChangeLouis Klein is an internationally recognized expert in the field of systemic... Read More →

Thursday July 28, 2016 4:00pm - 4:30pm MDT
ECCR 200

4:30pm MDT

Opportunity Tension at the Center of Sustainable Organization: Positive Organizational Scholarship and Generative Emergence
2786 It is widely understood that the complexity of the challenges we face globally and locally in this increasingly interdependent and VUCA world require our collective intelligence to create emergent adaptive approaches that sustain. Benyamin Lichtenstein has developed a framework for emergence that synthesizes previous scholarship and has gone further to identify the concept of “opportunity tension” that is at the core of the individual and collective entrepreneurial spirit that can create generative emergent social structures through acts precipitating sufficient disequilibrium in a system. Opportunity tension combines the extensive entrepreneurial literatures of both opportunity and motivation. This paper posits the critical and pivotal nature of opportunity tension as a driver of emergence. Five factors are identified that contribute to a nonlinear increase in the sense of opportunity tension. 1) The sense of opportunity tension perceived by those involved is expanded in a mutually reinforcing way as participants bring their capital (physical, human, social, cultural) to the endeavor. The more capital, the more opportunity surface is exposed. 2) Positive organizational behaviors (positive emotions, high-quality connections, enhanced knowledge creation, positive human traits, etc.) are mutually reinforcing and are consistently associates with positive outcomes in groups. They are attractive and inherently motivate participation. 3) Mutual reinforcement creates an upward spiral (nonlinear) sense of increased opportunity 4) All of these factors operate from the micro to the meso to the macro creating a web of reinforcing forces across scale and across units of analysis. This cross-hierarchical web becomes a powerful driver of cross scale action and cross-scale disequilibrium. 5) Emergence manifests across scale as a result contributing to a rising tide effect. The evidence for this deepening theory of opportunity tension comes from very extensive literatures in positive organizational scholarship, recent frameworks for types of emergence, and a developing body of thought around complexity leadership. The paper draws together these bodies of literature and the empirical evidence to create a richer theory of generative emergence of collective social structure from individual intention and sense of opportunity. Understanding this process is critical to developing organizations that use positive organization behaviors grounded in a relational calculus of organization as organism rather than organization as machine.

Chairs
avatar for Louis Klein

Louis Klein

SIG Chair: Organizational Transformation and Social Change, louis.klein@segroup.de
Vice President Conferences (2015), International Society for the Systems Sciences SIG Chair:    Systems Applications in Business and Industry SIG Chair:    Organizational Transformation and Social ChangeLouis Klein is an internationally recognized expert in the field of systemic... Read More →

Thursday July 28, 2016 4:30pm - 5:00pm MDT
ECCR 200
 


Filter sessions
Apply filters to sessions.
  • Break
  • Discussion Panel
  • ISSS
  • #ISSS2016 India
  • #ISSS2016 USA
  • Keynote
  • Paper Presentation
  • Public Event
  • Q&A
  • Registration
  • Roundtable
  • Social
  • Special Event
  • Student Program
  • Theme
  • Workshop