Loading…
#ISSS2016 Boulder has ended
Paper Presentation [clear filter]
Monday, July 25
 

1:30pm MDT

Systems Thinking and Wildland Fire Management
2724 A changing climate, expanding ex-urban residential development, and increasing pressures on ecosystem services raise global concerns over growing losses associated with wildland fires. New management paradigms acknowledge that fire is inevitable and often uncontrollable, and focus on living with fire rather than attempting to eliminate it from the landscape. A notable example from the U.S. is the National Cohesive Wildland Fire Management Strategy, which aims to bring multiple landowners and stakeholders together to achieve three broadly defined goals: resilient landscapes, fire-adapted human communities, and safe and effective response to fire. Implicit in the structure of these three goals is the nexus of three systems: the ecological system, the social system, and the fire management system, respectively. This systems-based structure reflects a perspective that contextualizes fire as a disturbance agent that influences and is in turn influenced by other agents and processes within a broader socio-ecological system. While the need for transformative system change is well-recognized, at least three central challenges remain: (1) the need to accept that how fires are managed is in many instances the limiting factor of system behaviour; (2) the need to improve our understanding of the characteristics and complexities of the fire management system itself; and (3) perhaps most fundamentally, the need to coherently apply systems analysis principles in order to improve system performance. In this presentation I will attempt to bridge these gaps by applying systems thinking to contemporary wildfire management issues in the U.S. One thread of the presentation will focus on synthesizing findings from various lines of fire-related research and identifying how collectively they reflect systemic flaws stemming from feedbacks, delays, bounded rationality, misaligned incentives, and other factors. Particular attention will be devoted to the “fire paradox,” whereby a legacy of fire exclusion in fire-prone forests has led to hazardous accumulations of flammable vegetation such that future fires burn with higher intensity and are more resistant to control; today’s “success” begets tomorrows failure. The second thread will outline a roadmap for redesigning the fire management system so that behaviour better aligns with purpose. This discussion will focus on recommended actions including breaking down institutional silos, investing in pre-fire assessment and planning, improving monitoring and performance evaluation, and adopting core risk management principles. Ideally this line of research will yield insights that can lead to meaningful systemic change and improved fire management outcomes.

Chairs
avatar for Mag. Stefan Blachfellner

Mag. Stefan Blachfellner

SIG Chair: Socio-Ecological Systems and Design, Bertalanffy Center for the Study of Systems Science
https://about.me/bstefan

Speakers

Monday July 25, 2016 1:30pm - 2:00pm MDT
ECCR 200

2:00pm MDT

The Holistic Values of Socio-Ecological Systems and the Practice of Green Development InChina
2758 The continuous intensify of ecological crisis has aroused a strong sense of ecological protection. Since the 80s of the 20th century, a serious of movement aimed at environmental protection, ecological movement, and feminism appeared in the developed countries in Western Europe. The movement which is called the Green Movement treated intellectuals and middle class as the main participants. The serious environmental problems also emerged in the process of realizing the rapid development of economy in China. Therefore, the Chinese government focus on the ideas of Green Development. The green development requires the whole society to establish a reasonable value of natural capital, to form new social and moral norms, to promote green lifestyles, and so forth. The way of China's green development has get the world's attention. From the green movement to the green development, it has formed a systems holistic values of socio-ecological system gradually. Firstly, we support the intrinsic value of natural system and oppose the traditional philosophy values which considered the tool value of nature as primary only when it is related to the subjective purpose of human beings or meets the needs of humans. Secondly, we propose that the values of natural system is holistic. The intrinsic value of natural system and the tool value can be converted to each other. As Rolston III said, the intrinsic value and the tool value would be converted among lives, species, systems and surroundings by the transformation of systems, so as to maintain the stability and integrality of systems. In socio-ecological system, the interaction between the natural values and human values and the function of each other formed the value chain of system dynamics and integrity. Thirdly, the order parameter of socio-ecological system is bearing threshold of systems, the order parameter emerged by the synergistic reaction of social system, economic system and natural system will constraint and control the collaboration optimization of each subsystem of the socio-ecological systems in turn. Modern systems science and complexity research has provided a new perspective and theoretical basis to the intrinsic value of natural systems and the holistic values of socio-ecological systems when it refers to the holistic property and emergence, adaptation and evolution, purpose and values of systems. The holistic values of socio-ecological systems pay more attention to the holistic interests of human social system, economic system and natural system. It has great significance to solve serious ecological crisis and realize sustainable futures in socio-ecological systems.

Chairs
avatar for Mag. Stefan Blachfellner

Mag. Stefan Blachfellner

SIG Chair: Socio-Ecological Systems and Design, Bertalanffy Center for the Study of Systems Science
https://about.me/bstefan

Speakers
MD

Mrs. Dongping Fan

systems2016@126.com
MQ

Mr Qiang Fu

vongss@163.com


Monday July 25, 2016 2:00pm - 2:30pm MDT
ECCR 200

2:30pm MDT

Framing a System
2862 Boundaries of a system are largely determined by human perception. As a result, the boundaries are to an extent arbitrary but to an extent created in response to changing environmental conditions. Given this dynamic, the way a system is framed in terms of its boundaries affects human action on a global scale. Understanding this framing can empower the human agent and enable a recontextualization of human potential such that our planetary system is approached and maintained in an ecologically equitable and sustainable fashion. This paper outlines how such framing relates to different scales of human civilization and what some of the important practical distinctions are related to such an act of framing.

Chairs
avatar for Mag. Stefan Blachfellner

Mag. Stefan Blachfellner

SIG Chair: Socio-Ecological Systems and Design, Bertalanffy Center for the Study of Systems Science
https://about.me/bstefan

Speakers

Monday July 25, 2016 2:30pm - 3:00pm MDT
ECCR 200

3:30pm MDT

The System of Accounts for Global Entropy Production, (Sage-P): Nonlinear Accounting of Gross Domestic Product (GDP) In the Domain of the Ecosphere, Sociosphere and Econosphere
2763 GDP is a linear measure at market prices of the annual production of the (final) goods and services produced in the National Economy. It is gross insofar as it excludes the degradation of the capital stock. The accounts are divided into four categories: (i) P = production/income (i.e., payments for work and/or rent from property), (ii) C = consumption/expenditure (i.e., payments for goods and services), (iii) T = trade with the-rest-of-the-word, (i,e,, payments to/from nonresident consumers/producers), and (iv) K = capital/surplus, (i.e., investment with an expected flow of future income). We shall redefine the categories of GDP as product of the Second Law of thermodynamics: (i) Production = Pe = negentropy. (ii) Ce = consumption = entropy, (iii) Te = international trade in net-valued export/import of entropy production Te = (Pe - Ce), (iv) Ke = Low Entropy Fund (LEF) available for human consumption = Ke = Pe/Ce. The three states of LEF: (a) surplus-state = Pe/Ce > 1, (b) deficit-state = Pe/Ce < 1, and (c) steady-state = Pe/Ce = 1. We shall apply the System of Accounts for Global Entropy Production (SAGE-P) in order to construct Gross Domestic Entropy Production accounts, GDPe. The first step is to calculate to LEF for the Nation x. The second step is a correspondence mapping of LEF on the four categories of GDP. The third step is to introduce the valuation method unique to the domains: (A) Ecosphere, (i.e., values conserved-in-themselves, or intrinsic, (B) Sociosphere, (i.e., values conserved-in-use, or participation) and (C) Econosphere, (i.e., values conserved-in-exchange, or market prices. A, B and C are nested sets in the form: A [B,(C)]. The fourth step is a GDP correspondence mapping of the rate of change of entropy production ∂ Pe/Ce on the value-added to the economy of primary production, (i.e., natural renewable and non-renewable resources), secondary production, (i.e., manufactured goods) and tertiary production (services). The policy objective is to minimise the rate of entropy production per unit of consumption that is: (a) feasible, (b) socio-culturally acceptable and (c) maximise the per capita human welfare.

Chairs
avatar for Mag. Stefan Blachfellner

Mag. Stefan Blachfellner

SIG Chair: Socio-Ecological Systems and Design, Bertalanffy Center for the Study of Systems Science
https://about.me/bstefan

Speakers


Monday July 25, 2016 3:30pm - 4:00pm MDT
ECCR 200

4:30pm MDT

The Reconstruction of Systems Paradigm: Study on the Idea and Model for Boundary-Balance of Nonlinear Society
2770 The development of contemporary China is in a unique complex situation which refers to a nonlinear system situation stems from the complex interactions among elements, structure, function and environment of Chinese social system. One of important features of this complex situation is the unpredictability of system evolution at the edge of chaos. One fundamental dilemma for Chinese social system in transition is how to build a paradigm to adapt to this complex situation.While the endeavors to transplant “linear ideal model”from Western society failed, and the “Simple Science Paradigm”which once dominated Chinese society is deep in crisis now. The serious environmental problems derived from these endeavors force China to build a new approach related to green development. As one of important thought sources to build the paradigm to adapt to this complex situation, process philosophy provides us with enlightening thinking tools. First, ontologically speaking, process philosophy help us to understand interactions between human activity systems and natural systems from the perspective of time-space-matter relationship. Second, epistemologically speaking, process philosophy emphasizes the construction of “organism” knowledge at the level of life community. Third, methodologically speaking, process philosophy attempts to rebuild a co-existence relationship between human activity systems and natural systems with the “prehension” methodology. We believe that the critical steps for solving the fundamental dilemma for the development of contemporary China include--focus on the deep contradictions between current economic development and environmental protection, taking process philosophy as one of important thought sources, based on modern systems science and complexity research, popularizing the new idea of Eco-society, rebuilding a paradigm for social system with the characteristic of the continuous emergence of sustainability, and promoting the continuous evolution of this paradigm in practice.

Chairs
avatar for Mag. Stefan Blachfellner

Mag. Stefan Blachfellner

SIG Chair: Socio-Ecological Systems and Design, Bertalanffy Center for the Study of Systems Science
https://about.me/bstefan

Monday July 25, 2016 4:30pm - 5:00pm MDT
ECCR 200
 
Thursday, July 28
 

3:30pm MDT

A Framework for Understanding and Achieving Sustainability of Complex Systems
2737 This paper takes a systems approach to outlining a framework for the sustainability of complex systems. Complex systems have one or more functions that strongly interact with their environments, or meta-system in which they are embedded. The success of the system in interacting with its environment over an extended time frame depends on that system’s ability to regulate its activities, both internal and external so as to remain ‘fit’. The concept of fitness derives directly from the evolutionary theory of phenotypic traits and capabilities (behaviors) being selected for or against by the environment of the system. But it is generalized beyond the standard neoDarwinian biological process. The roles of adaptivity and evolvability and the mechanisms of a hierarchical cybernetic governance subsystem in maintaining these are advanced as necessary conditions for achieving sustainability. An operational definition of sustainability is advanced along with a set of necessary conditions that must obtain in order for complex systems to achieve it. Several systemic dysfunctional conditions are explored to show how complex systems fail to achieve sustainability by failure of the hierarchical cybernetic governance subsystem. Examples from several natural and human-built systems are used to demonstrate these conditions. Clarification of the meaning of complexity across a spectrum of system types is given. A definition of complexity based on hierarchical levels of organization is given to ground the discussion of the hierarchical cybernetic governance subsystem and justify its necessity to achieve and maintain stable dynamics in unstable environments. The purposes and uses of this framework are discussed and examples provided. A brief description of the use of systems analysis to explore and discover functional and dysfunctional subsystems within the hierarchical cybernetic governance subsystem and how this might provide insights for the design of better performing subsystems is also provided. The paper concludes with a projection of the benefits of applying this methodology to the governance of the human social system (HSS).

Chairs
avatar for Mag. Stefan Blachfellner

Mag. Stefan Blachfellner

SIG Chair: Socio-Ecological Systems and Design, Bertalanffy Center for the Study of Systems Science
https://about.me/bstefan

Thursday July 28, 2016 3:30pm - 4:00pm MDT
ECCR 265

4:00pm MDT

Systems Models of the Social Ecology of Traffic Safety to Analyze the Effectiveness of Interventions
2878 The study will inform the development of a systems model(s) of the social ecology of traffic safety to test intervention effectiveness in reducing motor-vehicle crashes, injuries, and deaths for the State of Texas by accomplishing the following three objectives: (1) analyze the traffic safety goals proposed in the Texas Department of Transportation’s Highway Safety Plan for 2016 from a systems perspective; (2) assess the applicability of different systems modeling methods suited to analyze the causal relationships and effectiveness of interventions; and, (3) develop preliminary recommendations for a systems model(s) of traffic integrating the conditions and relationships perpetuating motor-vehicle crashes, injuries, deaths, and their potential interventions. The study will provide the fields of traffic safety, bioinformatics, epidemiology, biostatistics, behavioral, human factors, and engineering research with a better understanding of the dynamics driving motor-vehicle crash injuries and deaths to (a) improve crash and injury outcomes and quality of life; (b) decrease spending and/or use of those that are ineffective and increase use of those that are; and, (c) increase understanding of the causes and the outcomes of motor-vehicle crashes, injuries, and deaths individually, socially, culturally, and economically. Collectively, this enables previously impracticable prevention efforts and is a novel way for assessing the effectiveness of different interventions aimed at reducing motor-vehicle-related morbidity and mortality. Systems approaches are capable of capturing the dynamic complexity inherent within traffic and social systems in ways traditional approaches cannot. This analysis will involve identifying suitable systems approaches for analyzing relationships between the traffic system and interventions, including traditional countermeasures to reduce crash and injury morbidity and mortality, such as Texas traffic policies and regulations for motor-vehicles (e.g., speed limits, licensing and educational requirements for motor-vehicle drivers, road geometry and material requirements, safety belt requirements; indicators of motor-vehicle crashes, injuries, and deaths (e.g., morbidity and mortality data for accidents that involve alcohol, drugs, intersections, large trucks, and pedestrians); and, proposed interventions for increasing the use of such practices (e.g., incentives driving use—or lack thereof—of motorcycle safety gear, monetary discounts for safety training programs). While policy makers, economists, and other constituents have proposed specific goals or targets to decrease motor vehicle injuries, crashes, and deaths, none have been tested using methods that capture the dynamic complexity of real-world social systems to not only understand how and why these problems occur, but also what are the best leverage points for change given the effect and cost of the proposed solutions. Accordingly, the systems model to be developed could be used to conduct virtual experiments to test whether the goals set in the Texas Department of Transportation’s Highway Safety Plan for 2016 would be better targeted at one or two specific populations or applied more generally across the state but respective to important social, policy, and environmental factors. If a targeted approach was to be used, the model could help identify which populations or environments exhibit initial conditions favoring adoption of a proposed intervention(s) and hence are the best targets for the intervention. Ultimately, the study seeks to create an optimal portfolio of motor-vehicle safety interventions for use by state and local governments to address the need for truly effective interventions to reduce motor-vehicle crash and injury morbidity and mortality. The model will fulfill a significant need within traffic safety, bioinformatics, epidemiology, biostatistics, behavioral, human factors, and engineering research, as it provides a novel way to assess proposed solutions for reducing motor-vehicle crashes, injuries, and deaths through a means capable of capturing dynamic interactions, adaptivity, and non-linearity inherent within traffic and social systems, that are less time-consuming, and far less costly than traditional approaches.

Chairs
avatar for Mag. Stefan Blachfellner

Mag. Stefan Blachfellner

SIG Chair: Socio-Ecological Systems and Design, Bertalanffy Center for the Study of Systems Science
https://about.me/bstefan

Thursday July 28, 2016 4:00pm - 4:30pm MDT
ECCR 265
 


Filter sessions
Apply filters to sessions.
  • Break
  • Discussion Panel
  • ISSS
  • #ISSS2016 India
  • #ISSS2016 USA
  • Keynote
  • Paper Presentation
  • Public Event
  • Q&A
  • Registration
  • Roundtable
  • Social
  • Special Event
  • Student Program
  • Theme
  • Workshop